Clock OSC

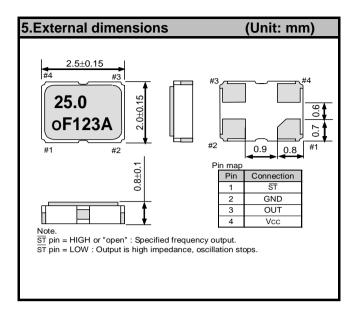
SG-210STF

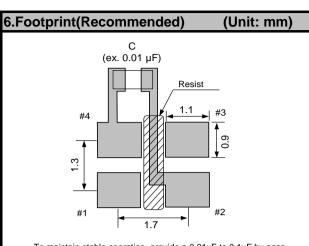
SG-210STF 27.000000 MHz L Product name Product Number / Ordering code

X1G0041710035xx

Please refer to the 8.Packing information about xx (last 2 digits)

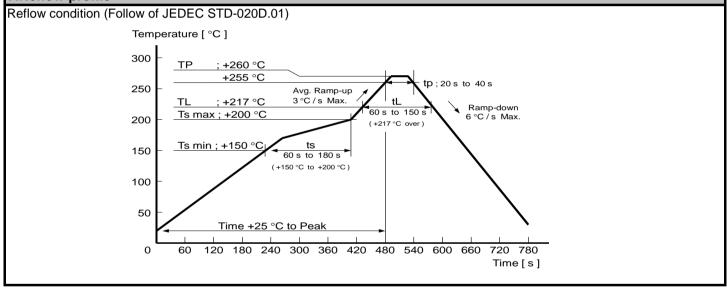
Output waveform CMOS

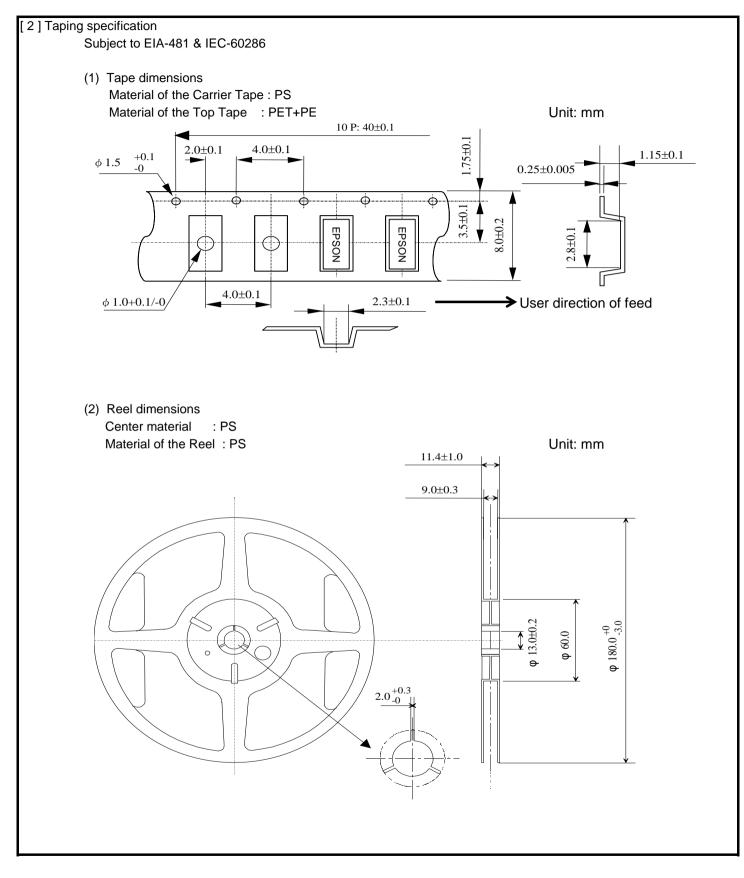

Pb free / Complies with EU RoHS directive Reference weight Typ 12 mg


Reference weight Typ. 12 mg	g							
1.Absolute maximum ratings								
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks		
Maximum supply voltage	Vcc-GND	-0.3	-	+4	V	-		
Storage temperature	T_stg	-40	-	+125	٥C	Storage as single product		
Input voltage	Vin	-0.3	-	Vcc+0.3	V	ST terminal		

2.Specifications(charac	teristics)					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks
Output frequency	fO		27.000000		MHz	
Supply voltage	Vcc	1.6	-	3.6	V	-
Operating temperature	T_use	-40	-	+85	°C	-
Frequency tolerance	f_tol	-50	-	50	x10 ⁻⁶	T_use
Current consumption	lcc	-	-	2.2	mA	No load condition Vcc = 3.6V
Stand-by current	I_std	-	-	2.7	μA	Vcc = 3.6V , ST = GND
Symmetry	SYM	45	-	55	%	50% Vcc Level L_CMOS=<15pF
Output voltage	V _{OH}	Vcc-0.4	-	-		-
	V _{OL}	-	-	0.4		-
Output load condition	L_CMOS	-	-	15	pF	CMOS Load
Input voltage	V _{IH}	0.8Vcc	-	-		ST terminal
	V _{IL}	-	-	0.2Vcc		ST terminal
Rise time	t _r	-	-	4	ns	Vcc1.6V : 0.2Vcc to 0.8Vcc Level, L_CMOS=15pF
Fall time	tf	-	-	4	ns	Vcc1.6V : 0.2Vcc to 0.8Vcc Level, L_CMOS=15pF
Start-up time	t_str	-	-	3	ms	t = 0 at 0.9Vcc
Jitter	t _{DJ}	-	0	-	ps	Deterministic Jitter Vcc=3.3V
	t _{RJ}	-	2.4	-	ps	Random Jitter Vcc=3.3V
	t _{RMS}	-	2.3	-	ps	δ(RMS of total distribution) Vcc=3.3V
	t _{p-p}	-	20	-	ps	Peak to Peak Vcc=3.3V
	t _{acc}	-	2.5	-	ps	Accumulated Jitter(δ) n=2 to 50000 cycles
Phase jitter	t _{PJ}	-	0.37	-	ps	Off set Frequency: 12kHz to 20MHz, Vcc=3.3V
Phase noise	L(f)	-	-	-	dBc/Hz	-
	()	-	-95	-	dBc/Hz	Off set 10Hz Vcc=3.3V
		-	-124	-	dBc/Hz	Off set 100Hz Vcc=3.3V
		-	-145	-	dBc/Hz	Off set 1kHz Vcc=3.3V
		-	-155	-	dBc/Hz	Off set 10kHz Vcc=3.3V
		-	-158	-	dBc/Hz	Off set 100kHz Vcc=3.3V
		-	-159	-	dBc/Hz	Off set 1MHz Vcc=3.3V
Frequency aging	f_age	-3	-	3	x10 ⁻⁶	@+25⁰C first year
		-	-	-		-

3.Timing chart tf tr Vcc 80 % VCC 50 %Vcc 20 %Vcc GND tw 4.Test circuit swich 1) Waveform observation ST VCC by-pass capacito supply Test Point OUT -0 GND L_CMOS 77 2) Current consumption swich VCC ST (A)by-pass capacitor supply OUT 0 *Current consumption under the Test GND Point disable function should be = GND. Ā


- 3) Condition
- (1) Oscilloscope
- · Band width should be minimum 5 times higher (wider) than measurement frequency.
- · Probe earth should be placed closely from test point and lead length should be as short as possible
- * Recommendable to use miniature socket. (Don't use earth lead.)
- (2) L_CMOS also includes probe capacitance.
- (3) By-pass capacitor (0.01 μF to 0.1 $\mu F)$ is placed closely between VCC and GND.
- (4) Use the current meter whose internal impedance value is small.
- (5) Power supply
- \cdot Start up time (0 %VCC to 90 %VCC) of power source should be more than 150 $\mu s.$
- \cdot Impedance of power supply should be as lowest as possible.


To maintain stable operation, provide a 0.01uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).

7.Reflow profile

8.Packing information

[1]Produc	t number la	ast 2 digits code(xx) description		The recommended code is "00"
	X1G0041	710035xx		
	Code	Condition	Code	Condition
	01	Any Q'ty vinyl bag(Tape cut)	14	1000pcs / Reel
	11	Any Q'ty / Reel	15	2000pcs / Reel
	12	250pcs / Reel	00	3000pcs / Reel

	his material is subject to change without notice.
	ny part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.
	he information about applied data, circuitry, software, usage, etc. written in this material is intended for efference only.
	Seiko Epson does not assume any liability for the occurrence of customer damage or infringing on any patent or copyright of a third party.
٦	This material does not authorize the licensing for any patent or intellectual copyrights.
· V	Vhen exporting the products or technology described in this material, you should comply with the applicable
	export control laws and regulations and follow the procedures required by such laws and regulations.
	ou are requested not to use the products (and any technical information furnished, if any) for the development
	and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that
	/OU
	vould not make the products available to any third party who may use the products for such prohibited
	ourposes. hese products are intended for general use in electronic equipment. When using them in specific applications
	nase products are intended for general use in electronic equipment. When using them in specific applications nat require
e	extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson n advance.
	/ Space equipment (artificial satellites, rockets, etc.)
	/ Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.)
	/ Medical instruments to sustain life
	/ Submarine transmitters
	/ Power stations and related
	/ Fire work equipment and security equipment
	/ Traffic control equipment
	/ And others requiring equivalent reliability.

10.Contact us

http://www5.epsondevice.com/en/contact/